We examined a risk assessment method of lead solder in Tokyo Bay using a numerical model. Three kinds of metal (Pb, Ag and Cu) contained in solders were evaluated. The ambient concentration of the metals was estimated by the model AIST-RAMTB (Aist - The Risk Assessment Model for Tokyo Bay) considering the atmosphere and seven major rivers as the supplying sources of metals. The Giant Pacific Oyster (*Crassostrea gigas*) was selected to evaluate the extinction risk. The growth inhibition concentration for 50 % (EC₅₀) was used for Pb as 380 μ g·L⁻¹. Ag and Cu were evaluated based on the lethal concentration for 50 % (LC₅₀); 100 μ g·L⁻¹ for Ag and 560 μ g·L⁻¹ for Cu. Uncertainty factor (UF) was defined as 10. The result shows the for 50 % (LC₅₀); 100 μ g·L⁻¹ for Ag and 560 μ g·L⁻¹ for Cu. Uncertainty factor (UF) was defined as 10. The result shows the maximum risk values of 5.57×10^{-6} for Pb, 1.40×10^{-6} for Ag and 4.09×10^{-8} for Cu. It suggested that the risk of solder lead was reduced by changing the lead solder to lead-free solder in Tokyo Bay.